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Coronavirus Diseases-2019 (COVID-19) has caused a large global outbreak and has been declared as a pandemic
by the World Health Organization (WHO). It has been proposed that COVID-19-related hyperinflammation and
dysregulated immune response might play a critical role in developing a cytokine storm which usually pro-
gresses to a life-threatening acute lung injury or acute respiratory distress syndrome in infected individuals.
Lidocaine, a local analgesic and anti-arrhythmic, is known for its anti-inflammatory actions and has been used to

reduce cough and improve respiratory symptoms in severe asthmatic patients. It has a demonstrated safety
profile. It is proposed that nebulized lidocaine might be beneficial in reducing cytokines, protecting patients’
lungs and improving outcomes in COVID-19 patients when administered via inhalation as an adjunctive treat-
ment for severe respiratory symptoms in patients fighting the novel Coronavirus. Additional investigation is

warranted.

Introduction

The novel coronavirus, severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2) which causes Coronavirus Diseases-2019
(COVID-19) has produced a large global outbreak which has been de-
clared as a pandemic by the World Health Organization (WHO) [1]. Its
emergence follows the same pattern as previous pandemics: emergence
from a zoonotic pathogen pool in an area in which changes in human
population density, wildlife diversity, and local behavioral and socio-
economic realities predispose animal to human spread of disease [2]. In
less than one year, COVID-19 has had a devastating health and eco-
nomic impact worldwide, but the ultimate effect remains unknown [3].
There continues to be no available vaccine, and current preventative
strategies are non-specific [4]. Similarly, there are no specific treat-
ments, and current interventions are predominantly supportive [5].
Since treatment is nonspecific, multiple approaches will need to be
combined to optimize outcome.

Role of inflammatory response in respiratory distress

Early literature suggests that over 20% of infected individuals with
coronavirus-related pneumonia will experience acute respiratory dis-
tress syndrome (ARDS) [6]. Among patients with pneumonia caused by
COVID-19, fever was the most common symptom, followed by cough
and dyspnea as well as chest pain in severe cases [7]. ARDS in COVID-
19 patients is believed to have a similar pathology to related
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coronavirus infections, SARS and Middle Eastern respiratory syndrome
(MERS), and involve an excessive immune response which might lead
to death of epithelial cells and endothelial cells, followed by activation
of abnormal T-cells and macrophages [8-9]. This leads to a severe in-
flammatory response which induces a change of vascular permeability,
causing acute pulmonary edema with the formation of hyaline mem-
branes and a diffuse thickening of the alveolar wall [8-9]. Cellular
apoptosis and amplified immune response activate a cytokine storm in
the lower airway with extreme rise in plasma cytokines and chemokines
including interleukins (IL-1, IL-2, IL-6, IL-7, IL-8, IL-9, and IL-10), fi-
broblast growth factor (FGF), granulocyte-macrophage colony stimu-
lating factor (GM-CSF), IFN-y, granulocyte-colony stimulating factor
(G-CSF), interferon-y-inducible protein (IP10), monocyte chemoat-
tractant protein (MCP1), macrophage inflammatory protein 1 alpha
(MIP1A), platelet derived growth factor (PDGF), tumor necrosis factor
(TNF-a) and vascular endothelial growth factor (VEGF) [10,11].

A rapid and controlled immune response is the first line of defense
against viral infections; however, a dysregulated and extensive immune
response may worsen outcome by mediating extensive pulmonary pa-
thology, leading to massive infiltration of neutrophils and macro-
phages, excessive production of cytokines, and diffuse alveolar damage
[12], generating a vicious cycle for coronavirus-related ARDS [9].
COVID-19 virus is known to bind and gain cellular entry via angiotensin
converting enzyme 2 (ACE2) receptors, which are highly expressed in
the lung [13]. Lymphocytopenia is one of the most notable markers of
COVID-19, with markedly reduced yet hyperactivated numbers of
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CD4" T cells, CD8* T cells, B cells and natural killer (NK) cells [8]. It is
speculated that lymphocytes are destroyed by the cytokine storm not by
the virus itself since it is known that lymphocytes do not express ACE2
receptors which are the main target to COVID-19 [10]. It has been
proposed that using anti-inflammatory agents and reduction in the
cytokine response to COVID-19 induced hyper-inflammation may re-
duce the common respiratory distress and improve outcome [14].

Possible lidocaine effects on COVID-19

Lidocaine is known as a short-acting local anesthetic and an anti-
arrhythmic agent which exerts inhibitory actions on voltage-gated so-
dium (Na*) channels and calcium (Ca®™) channels [15]. Activation of
some ionic channels, including Ca*, potassium (K*), and chloride
(CI") channels, play a critical role in T-cell activation [16]. A study
suggests that activation of voltage-sensitive and voltage-gated Na™
channels is a crucial step in permitting an adequate influx of Na* and
preserving a high and sustained Ca®* concentration during the process
of T-cell activation [17]. Tanaka et al in an in vitro model, showed that
inhalational doses of lidocaine have immunoregulatory effects on T
cells derived from patients with allergic asthma by directly inhibiting
cytokine production and the proliferative response through blockade of
of Ca®* and Na* channels [18].

Recently, some preliminary studies have demonstrated anti-in-
flammatory actions for local anesthetics including lidocaine [19]. The
mechanism of its anti-inflammatory action is still unclear; however, it
has been hypothesized that lidocaine might regulate cellular metabolic
activity, migration, exocytosis and phagocytosis by reversibly inter-
acting with membrane proteins and lipids [19]. Lidocaine was found to
attenuate the inflammatory response in animals by decreasing poly-
morphonuclear granulocytes (PMNs) accumulation in the lung [20].
Cytokine release, respiratory burst, and phagocytosis are important
functions of macrophages, and it was demonstrated that these processes
are sensitive to intracellular pH changes which are regulated by va-
cuolar-type-H* translocating adenosine triphosphatase and an Na*-H™
exchanger (NHE) [21]; lidocaine inhibits NHE in human PMNs in vitro
which indicates a possible mechanism of attenuating cytokine release
by lidocaine [22]. The anti-inflammatory properties of lidocaine en-
couraged physicians to introduce it into clinical practice and lidocaine
has been successfully used in some inflammatory diseases and condi-
tions such as burn injuries, interstitial cystitis, ulcerative proctitis, ar-
thritis and herpes simplex infections [19].

Animal studies highlight the potential benefits of lidocaine. Studies
involving animal models have showed beneficial effects of lidocaine on
lung injury. Lidocaine infusion attenuated Escherichia coli endotoxin-
induced lung injury and significantly reduced lung edema, leukocyte
counts and the release of various inflammatory mediators [23]. Similar
studies were conducted on pancreatic enzymes-induced, HCl-induced
and bleomycin-induced lung injury in animals and showed that lido-
caine attenuated morphologic and histologic lung damage [20,24-25].
In a murine model of asthma, lidocaine nebulization significantly re-
duces the levels of cytokines IL-4, IL-5, IL-13 in lung tissues in addition
to reduction in parabronchial fibrosis [26]. Plasma levels of IL-6 and IL-
8 concentrations in bronchoalveolar fluids were reduced in animals
infused with lidocaine [21]. Additionally, lidocaine was found to de-
crease cytokine-induced cell injury in-vitro [27]. A recent study has
demonstrated that inflammatory markers IL1, and IL-6, interferon-g,
and tumor necrosis factor a (TNFa) were significantly reduced fol-
lowing administration of intravenous lidocaine in patients undergoing
laparoscopic cholecystectomies [28]. There are promising early results
that agents that antagonize IL-1 and IL-6 may be of specific utility in
patients infected with COVID-19 virus. Malik et al., proposed a similar
hypothesis, that lidocaine might be of use in COVID-related lung injury
through a possible antiviral effect and by targeting ion channels, par-
ticularly stretch activating ion channels in lungs [41].

Nebulized lidocaine has showed a promising efficacy and safety of
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lidocaine in suppressing cough [29], improving pulmonary functions
and reducing the need for using corticosteroids in asthmatic patients
[30-31]. If this observation is generalizable, one would expect that li-
docaine might have a role in treating respiratory symptoms in patients
with COVID-19 by reducing cough and numb patients’ chest pain.
Nebulized lidocaine appears to be a possible option for improving
COVID-19 related lung injury by reducing cytokine storms that usually
occur with COVID-19 which would theoretically reverse ARDS.

Dosage and safety of nebulized lidocaine

Nebulized solutions varying in concentration from 1% to 4% have
been studied and used without major side effects on patients [29].
Studies have found that large doses of lidocaine inhalation up to
575 mg are quite safe [29]. Lidocaine has short half-life; using neb-
ulized lidocaine every 4-6 h in a dose of 4% Lidocaine in 2 ml saline
will achieve between 320 and 480 mg of a daily dose of lidocaine.
Studies have been done to evaluate the plasma level of nebulized li-
docaine; 400-525 mg of nebulized lidocaine produced peak levels of
1.1 and 1.4 mcg/ml, respectively, which is far below the 5 mcg/ml level
associated with toxicity [32-33]. Lidocaine has been safely adminis-
tered to patients with COVID-19 infection to manage cough during
intubation and extubation [34], and prevent potential cardiac compli-
cations of chloroquine, hydroxychloroquine or azithromycin [35].

Common adverse effects are unpleasant taste, throat and mouth
irritation, and oropharyngeal numbness [36]. Numbness of the or-
opharynx with lidocaine use could theoretically predispose patients to
micro-aspiration and subsequently secondary bacterial infections;
however, earlier studies demonstrated inhibitory actions of lidocaine on
various strains of bacteria which suggests a prophylactic rule of lido-
caine against bacterial infections [19,37].

The risk of bronchoconstriction is still controversial. Some studies
have showed that extensive use of 10% lidocaine infusion may cause
reflex bronchoconstriction in asthmatics [38-39], other studies found
no effect on the airways [36,40] and it appears that route of adminis-
tration may be important in this adverse outcome (nebulized being
safer). If patients suffer from asthma or hyperreactive airway, it may be
reasonable to pre-administer a bronchodilator which usually prevents
the potential of a bronchospasm induced by lidocaine [39].

Conclusion

Lidocaine inhalation has anti-inflammatory effects that are pre-
dicted to reduce inflammatory cytokines which appear to be a major
problem in COVID-19-related cytokine storm [41]. Given the compli-
cations and risks of the available anti-inflammatory agents, lidocaine,
with its relatively benign side effect profile, would be a promising ad-
junctive treatment for COVID-19 patients with severe respiratory
symptoms and those who develop a cytokine storm. Additional research
is warranted to further define its efficacy and safety in treating severe
ARDS in COVID-19 virus-infected patients.
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